A Preconditioner for A Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems
نویسندگان
چکیده
In this paper we are concerned with the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. We extend the primal-dual Newton Conjugate Gradients (pdNCG) method in [11] for CS problems. We provide an inexpensive and provably effective preconditioning technique for linear systems using pdNCG. Numerical results are presented on CS problems which demonstrate the performance of pdNCG with the proposed preconditioner compared to state-of-the-art existing solvers.
منابع مشابه
A Second-order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries
In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. We prove global convergen...
متن کاملPreconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems
When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each ite...
متن کاملA primal-dual active-set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems
In this paper, we propose a fast primal-dual algorithm for solving bilaterally constrained total variation minimization problems which subsume the bilaterally constrained total variation image deblurring model and the two-phase piecewise constant Mumford-Shah image segmentation model. The presence of the bilateral constraints makes the optimality conditions of the primal-dual problem semi-smoot...
متن کاملSemidefinite Programming Relaxations for the Quadratic Assignment Problem
Semideenite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualii-cation always fails for the primal...
متن کاملInterior-point Methods for Lagrangian Duals of Semideenite Programs
This paper proposes a new primal-dual predictor-corrector interior-point method for a class of semideenite programs, which numerically traces the central trajectory in a space of Lagrange multipliers. The distinguishing features of the method are full use of the BFGS quasi-Newton method in the corrector procedure and an application of the conjugate gradient method with an eeective preconditioni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015